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Abstract 

Voluntary carbon market (VCM) schemes facilitate funding for projects that promote sustainable 

land management practices to sequester carbon in natural sinks such as biomass and soil while 

also supporting agricultural production. The effectiveness of VCM schemes relies on accurate 

measurement mechanisms that can directly attribute carbon accumulation to project activities. 

However, measuring carbon sequestration in soils has proven to be difficult and costly, especially 

in the context of fragmented smallholdings predominant in global agriculture. The cost and 

accuracy limitations of current methods to monitor soil organic carbon (SOC) impede the 

participation of smallholder farmers in global carbon markets where they could potentially be 

compensated for adopting sustainable farming practices that provide ecosystem benefits. This 

study evaluates nine different approaches for SOC accounting in smallholder agricultural projects. 

The approaches considered involve the use of proximal and remote sensing along with process 

model applications. Our evaluation centers on stakeholder requirements for the Monitoring, 

Reporting, and Verification (MRV) system, using the criteria of accuracy, level of standardization, 

costs, adoptability, and the advancement of community benefits. By analyzing these criteria, we 

highlight opportunities and challenges associated with each approach, presenting suggestions to 

enhance their applicability for smallholder SOC accounting. The research gains its contextual 

foundation from a case study on the Western Remote sensing shows promise in reducing costs for 

direct and modeling-based carbon measurement. While its use is seen in certain carbon market 

applications, transparency is vital for broader integration. This demands collaborative work and 

investment in infrastructure like spectral libraries and user-friendly tools. Balancing community 

benefits against the detached nature of remote techniques is essential. Enhancing information 

access aids farmers, boosting income through improved soil and crop productivity even with remote 

monitoring. Handheld sensors can involve smallholders given consistent protocols. Engaging the 

community in monitoring can cut project costs, enhance agricultural capabilities, and generate extra 

income.  
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1. Introduction 

Soils' capacity as a carbon sink, when properly managed, is increasingly recognized as an 

important strategy to fight climate change. Sustainable agricultural soil management not only aids 

in reversing degradation on farms but also has broader benefits for small-scale farming such as 

improved soil fertility and lower production input costs (Liniger et al., 2011). Sustainable land 

management also enhances ecosystem resilience against climate change impacts (Chenu et al., 

2019; Rumpel et al., 2020). Nonetheless, most of the world's agriculture is comprised of smallholder 

farmers who face challenges in accessing technical knowledge and financial resources for 

implementing sustainable land management practices due to inadequate funding for public 

extension services worldwide (Wollenberg et al. 2022).  

Voluntary carbon markets offer a solution to incentivize improved soil management and by this 

address multiple issues of food security, climate adaptation and climate mitigation in developing 

countries through improved soil management. Carbon sequestered on-farm through sustainable 

management practices can be traded as a commodity to actors aiming to offset their corporate 

greenhouse gas emissions.  Voluntary carbon projects involving soil carbon management are 

emerging as a growing niche, with a tenfold increase in carbon credits issued from agricultural land 

management projects between 2020 to 2021 (Ecosystems Marketplace, 2022). However, effective 

scaling of this carbon project type to benefit smallholders in the tropics is hampered by a lack of 

reliable, cost-effective soil analysis methods for quantifying carbon sequestration benefits of land 

management practices (FAO et al., 2020; Olander et al., 2013; Berry & Ryan, 2013). This obstacle 

has become even more significant following the deactivation of the most utilized method for 

agricultural carbon projects by leading carbon standard, Verra1. 

For several reasons, smallholder carbon projects are unique to those involving commercial farms 

in high-income countries which have been the focus of other studies (Paul et al 2023). Importantly, 

smallholder fields are usually less than two hectares in size on average, so projects require 

aggregation of hundreds or thousands of landowners to achieve economies of scale and a 

tradeable amount of carbon credits. This increases the monitoring complexity and costs. 

Smallholder farmers also have unique needs related to project governance and adoption incentives 

that differ from farmers in Europe or North America who typically have larger plots, more access to 

information, and require less technical support. Wollenberg et al. (2022) have noted the importance 

of integrating the multiple needs and requirements of different stakeholders and using participatory 

approaches throughout such projects.  

 
1 Verra deactivates VM0017 methodology 

https://verra.org/verra-announces-planned-inactivation-of-sustainable-agricultural-land-management-methodology-vm0017/#:~:text=Verra%20will%20inactivate%20VCS%20methodology%20VM0017%20Adoption%20of,the%20VCS%20Methodology%20Development%20and%20Review%20Process%2C%20v4.2.
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Emerging technologies, like proximal and remote sensing, are promising for rapid, large-scale soil 

data collection and analysis. Many sources have investigated the use of such technologies for 

measuring soil organic carbon (SOC). However, within the context of a carbon project, technologies 

e.g., spectroscopy, remote sensing, and related tools e.g., handheld soil scanners are used for 

either data collection or analysis and applied as part of a larger monitoring approach to account for 

soil organic carbon content. The approach, together with monitoring approaches of other emission 

source/sinks and non-carbon variables, data transmission and reporting tools, makes up the MRV 

system of a (carbon) project. The approach considers procedure used for data collection and 

analysis, tools used, how often and by whom. Based on the nuances described above, it is more 

practical to evaluate SOC monitoring approaches for smallholder carbon projects than to assess 

single measurement tools. This paper takes on such a holistic systems perspective by addressing 

the following research questions:   

1. What are the needs of different stakeholders in smallholder agricultural carbon projects in 

developing countries?  

2. How well can existing and new SOC monitoring approaches meet the identified needs?  

3. What are the challenges and benefits of available SOC monitoring approaches in the 

context of smallholder carbon projects in developing countries?  

While questions have recently been raised about the actual effectiveness of these Agricultural Land 

management (ALM) projects in reaching their climate change mitigation targets (Paul et al 2023), 

this paper does not attempt to weigh in on this subject. Rather, considering the growing number of 

such projects, and the predicted exponential growth of the Voluntary Carbon Market in coming 

years (BCG & Shell 2022), this study takes on a functional outlook to evaluate nine different SOC 

monitoring approaches (Table 1), and their potential for synergizing, rather than trading off on 

multiple stakeholder objectives / requirements. The approaches were evaluated based on their 

level of accuracy, standardization, cost reduction, adoptability, and their impact on community 

benefits. These criteria were identified as key factors influencing the choice of monitoring 

approaches for carbon projects. Such an evaluation is especially timely due to increasing public 

scrutiny of methodologies applied by carbon projects (Miltenberger et al 2021) and a resulting 

evolution of smallholder methodologies within the standards. 

The paper is further organized as follows: after providing some background information around the 

technical and operational criteria of SOC monitoring approaches we will elaborate on the nine 

approaches chosen for the evaluation in this paper.  The methods section will provide information 

on the case study location in Kenya the paper connects to and will present all details on how the 

evaluation of SOC monitoring approaches was conducted. Finally, we highlight the main results 
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related to the research questions and discuss further implications of the findings to provide a 

comprehensive conclusion.  

2. Conceptual Background 

2.1. Necessary elements in project MRV 

In designing a monitoring approach for carbon projects, certain criteria must be borne in mind which 

can be classified into two categories.  

Technical criteria are necessitated by the methodology and program requirements of carbon 

certification standards, following scientific best-practice. The IPCC guidelines identify 

completeness, accuracy, transparency, (time-series) consistency, and comparability as its 

foundational data quality principles. Completeness means that an inventory covers all relevant 

sources and sinks, and gases included in the IPCC Guidelines as well as other existing relevant 

source/sink categories which are specific to individual project. Most times, project boundaries 

include more than one carbon pool, which often require different monitoring methods. For example, 

a typical smallholder agricultural project might monitor above ground biomass on-farm as well as 

soil organic carbon pools as well as emissions from inorganic fertilizers and biomass burning. As 

such, it’s important to note that the SOC accounting is only one aspect of the project’s MRV system. 

Transparency means that the assumptions and methodologies used for an inventory should be 

clearly explained to facilitate replication and assessment of the inventory by users of the reported 

information. Accuracy is a relative measure of the exactness of an emission or removal estimate. 

Estimates should be accurate in the sense that they are systematically neither over nor under true 

emissions or removals, as far as can be judged, and that uncertainties are reduced as far as 

practicable. Consistency means that an inventory should be internally consistent in all its elements 

with inventories of other years. An inventory is consistent if the same methodologies are used for 

the base and all subsequent years and if consistent data sets are used to estimate emissions or 

removals from sources or sinks. Comparability means that estimates of emissions and removals 

reported should be comparable among projects. For this purpose, projects should use 

methodologies and formats agreed by standards for estimating and reporting GHG impacts. GHG 

Protocol and ISO 14062-2 introduce the additional principle of conservativeness. Conservative 

values and assumptions are those that are more likely to underestimate than overestimate GHG 

reductions. Where data and assumptions are uncertain and where the cost of measures to reduce 

uncertainty is not worth the increase in accuracy, conservative values and assumptions should be 

used to ensure that GHG reductions / removals are not overestimated. These principles are 

fundamental to provide investors and stakeholders with sufficient confidence in credits and allowing 

them to make decisions with a reasonable assurance as to the integrity of the reported information.  
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Operational (feasibility) criteria on the other hand are determined by the conditions under which 

projects remain practical and viable to their proponents. Like other projects, developers of carbon 

projects aim to recover expenses and ensure the ongoing viability of their operations. The approach 

chosen for project monitoring should be within acceptable costs and suited to the level of available 

data and local expertise. Monitoring also typically accounts for the non-carbon objectives of the 

proponents/investors and other stakeholders. For example, investors and government authorities 

are usually interested in a project’s socio-economic and/or agronomic impacts on smallholders 

which tie into other Sustainable development goals. Most carbon projects therefore include this into 

a monitoring framework - ideally, through a mechanism that can be effectively synchronized with 

the project’s carbon Measurement, Reporting and Verification (MRV) system. 

2.2. SOC monitoring approaches  

SOC monitoring approaches can be categorized into 2 ‘Domains’ (Figure 1) in line with Paustian 

et al., (2019). Domain a involves the direct measurement of soil organic carbon through empirical 

observation of soil physical/chemical components while Domain b contains activity-modelling 

approaches which rely on the use of biogeochemical process models to estimate carbon stock 

changes above and below ground due to changes in land management.  

 

Figure 1: Alternative SOC Monitoring Domains: a. Direct measurement and b. Activity 

modelling 

 

Domain a (measurement) approaches have 2 main sources of inaccuracy: 

i.) Sampling error from biased or non-representative sampling design. This can be minimized 

by following best practice for soil sampling (See Annex 3 of FAO, 2020; World Bank, 2021) 

but often comes at additional costs,  

ii.) Measurement errors due to the equipment or analytical procedures used to estimate SOC 

content form the sample. However, this is quite low when using conventional methods.  

The accuracy of Domain b (modelling) approaches is limited due to 2 broad challenges:  
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i.) Leading soil models are calibrated and parameterized in temperate climates with different 

weather and soil properties. This limits the applicability of model parameters in tropical 

regions where projects are increasingly implemented. As such, suitability of activity 

modelling approaches for a project location can only be guaranteed through local 

validation of the model with long term experiments. This introduces uncertainty from the 

measurement and/or estimation of model input parameters.  

ii.) The uncertain nature of modelling itself given that results are based on simulation of 

natural systems, rather than observation. Newer methods (e.g., VM0042 by VCS) now 

address uncertainty from model prediction error, in addition to error from model input data 

which was previously only accounted for. 

Regardless, these approaches are less expensive and allow more frequent measurement, 

reporting and verification, than domain b. By contrast, Direct analysis of soil carbon using 

conventional laboratory methods is cost-intensive and unsuitable for large processing volumes 

(Angelopoulou et al., 2020; Milori et al., 2011). Therefore, many smallholder agricultural projects 

on the carbon market prefer activity modelling approaches. With Verra’s recent inactivation of 

pioneer activity modelling methodology VM0017 other authors (Schilling et al., 2023) have 

speculated an impending shift to direct measurement for smallholder projects, reflecting the need 

for more rigorous methodologies for carbon projects. There is therefore a critical gap for 

standardized, accurate and low-cost approaches to predict and monitor changes in SOC which are 

suitable for smallholder projects and can enable their participation in carbon markets. 

3. Methods 

3.1. Study design 

This study follows an iterative process of literature reviews and key informant interviews, 

underpinned by a case-study conducted in the Western Kenya Soil Carbon Project (WKSCP). An 

initial review was carried out to establish the current state of project SOC monitoring and develop 

a short-list of potential monitoring approaches to be analyzed. These include peer-reviewed 

literature on soil carbon studies, monitoring and implementation reports of carbon projects, lessons 

learned reports, discussion papers from project investors, and researchers as well as methodology 

documents from official offsetting standards. Three (3) approaches: Activity modelling 1 (AM1), 

Laboratory analyses (L1 and L2) as described in Table 1 were identified as the current state-of-

the-art for SOC accounting. AM1 was chosen as a reference since it is the predominant monitoring 

approach used in existing smallholder carbon projects to monitor SOC change in croplands (So et 

al., 2023). The approach is characterized by modelling procedures relying on land management 

data, soil, and environmental parameters. On the other hand, conventional laboratory techniques 
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including dry combustion (L1) and Ex-situ MIR spectroscopy (L2) are the widely agreed upon 

benchmarks for reliable SOC measurements.  

From the literature (Olander et al., 2013; Saiz & Albrecht, 2016; Climate Action Reserve, 2019), 

desired improvements from these three approaches include simplified and less expensive data 

collection, reducing methodological complexity (and thus expertise requirements), while improving 

the scalability of SOC monitoring results over large areas. Soil spectroscopy, remote sensing and 

an increased integration of digital tools were identified in the literature review as components for a 

future vision of an improved SOC monitoring approach. Six alternative approaches (Table 1) based 

on these technologies were then proposed for comparison. 
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Table 1: Description of the selected SOC monitoring approaches  

Code (Definition) 

Data collection 

Analysis Domain 

Procedure Sample size Frequency 

 

L1 

(Laboratory Analysis 1) 

Soil samples collected 

professionally 

 

All participating farms Every 4 years Wet chemistry 

(Dry combustion) 

a 

 

L2 

(Laboratory Analysis 2) 

Soil samples collected 

professionally 

 

All participating farms Every 4 years Dry chemistry (MIR 

spectroscopy) 

a 

 

PS1 

(Proximal sensing 1) 

Soils scanned in-field by 

trained farmer 

representatives 

All participating farms Every 4 years In-field (Vis-NIR) 

spectroscopy 

a 

 

PS2 

(Proximal sensing 2) 

Soils scanned in-field by 

hired professional service 

All participating farms Every 4 years In-field (Vis-NIR) 

spectroscopy 

a 
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RS1 

(Remote Sensing) 

Spectral reflectance imagery 

from satellite data. 

Local ‘ground-truth’ soil 

samples collected 

professionally  

All participating farms Yearly Spectral analysis of 

satellite reflectance 

imagery  

a 

 

AM1 

(Activity Modelling 1) 

Land management data 

submitted by farmers and 

verified via random spot-

checks / surveys. 

All participating farms Yearly Tier 2 process 

modelling 

b 

 

AM2 

(Activity Modelling 2) 

Land management data 

collected by enumerators 

All participating farms Yearly Tier 2 process 

modelling 

b 

 

AM3 

(Activity Modelling 3) 

Land management data 

collected by enumerators 

stratified random 

sample of farms 

yearly Tier 2 process 

modelling 

b 

 

AM4/RS2 

(Activity Modelling 4) 

Land management data 

collected via satellite remote 

sensing 

All participating farms Yearly; & verified 

through periodic 

(3-5 year) field 

surveys 

Tier 2 process 

modelling 

b 
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3.2. Study area and data collection 

The Western Kenya Soil Carbon Project (WKSCP) was selected to provide a general context on 

agricultural carbon projects in developing countries. This project takes place in the counties of 

Bungoma, Siaya and Kakamega in Western Kenya (see Figure 2). 

 

Figure 2: Map of study area. Source: Soil Carbon Certification Services (2023)  

 

The project is expected to cover an area of 32,000ha at full-scale and involve about 40,000 farmer 

households. It has an estimated emission reduction impact of 1,873,798 tCO2e equivalent over its 

20-year lifespan. WKSCP is registered with the Verified Carbon Standard using the VM0017 

methodology “Sustainable Agricultural Land Management” which represents a Domain b approach. 

The project is currently undergoing verification for the first round of credit issuance.  

The entire project area has a Tropical montane climate (IPCC, 2006). Soils are mostly clayey with 

high potential for storing organic matter. However, increasing human population over time resulting 

in land fragmentation, overutilization of the land without replenishment and recently, the misuse of 

inputs has led to a depletion of soil nutrients, loss of top-soil carbon and land degradation (Mburu 

and Kiragu-Wissler 2017; Sommer et al., 2018). Subsistence, rain-fed farming with low yields is 

dominant in all three project counties. The average farm size is about 1 hectare. Major crops are 

maize, and beans grown in two planting seasons without a fallow period. Due to a high density of 

poor rural, farming households (Tennigkeit et al., 2013), this region of Kenya is a hotspot for carbon 

and development projects with several underway and under development. 
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To gain more contextual information about the operational dynamics of a carbon project, soil 

monitoring in general and to understand the perceptions and experiences of project stakeholders 

about the short-listed SOC monitoring approaches, semi-structured interviews were conducted 

between April to May 2021 in the study area with representatives from 6 stakeholder groups. These 

groups were: Smallholders, Project developers and Implementing partners (IPs), Carbon 

certification standards, governmental/research agencies, and technical(methodological) experts. A 

total of 102 smallholder in all three counties and 16 expert interviews were conducted based on 

convenience (location, timing, and availability of the identified stakeholders to give an interview 

within the study timeframe). 8 of the expert interviews were conducted face-to-face while 8 were 

held over Zoom or Microsoft Teams. The smallholders were selected via random sampling stratified 

by geographical location (ward2) and included project participants and non-participants. All the 

smallholder interviews were conducted in person.  

Interview questions were developed from the relevant themes in the literature and were tailored to 

each respondent based on their area of expertise. The questions involved querying stakeholders 

about their objectives in joining the carbon project, what information or results they anticipate from 

the monitoring process and their views on how soil monitoring tools and approaches could work in 

the project. The interviews were recorded, transcribed, and later analyzed as described in section 

3.3. 

3.3. Data Analysis 

Figure 3 presents a conceptual framework developed to analyze the selected SOC monitoring 

approaches and to identify future development opportunities. At the center of the framework lies 

five evaluation criteria which are used to compare the proposed approaches and assess their 

potential benefits over conventional approaches. The criteria reflect the aforementioned project 

MRV needs and challenges identified in the literature search and further corroborated through key 

informant interviews. 

 
2 In Kenya, there are 47 counties which are subdivided into 290 administrative units called sub-counties. Each sub-
county is further stratified into wards which contain smaller villages. 
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Figure 3: Analytical framework for the evaluation of SOC Monitoring approaches. 
Source: Authors own elaboration  

 
Accuracy and standardization reflect the “technical criteria” defined by the standards while cost 

reduction, adoptability and community benefits reflect “operational criteria” highlighted by various 

project stakeholders. Using these criteria as a basis, the various approaches identified in Table 1 

are then evaluated, leading to recommendations for future improvements needed for these 

approaches to address the multiple needs of stakeholders in smallholder soil carbon projects in 

low- and middle-income countries. 

First, each evaluation criterion was assigned a suitable indicator (scoring mechanism) to aid 

objective comparison between the approaches (Table 2). Then, a deductive thematic analysis was 

conducted on the literature and interview data as follows.
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Table 2: Evaluation criteria and indicators for comparison 

Evaluation 
Criteria 

Definition and Indicator Source of data  

Accuracy Definition. The relative ability of the 
underlying technology to reflect the real 
value of SOC stock or stock changes.  
Indicator. Mean R2 values from the 
literaturea, scored according to the scale: 
5 = 0.9-1.0, 4 = 0.8-0.9, 3 = 0.7-0.8, 2 = 0.6-
0.7, 1 = 0.5-0.6 

Peer-reviewed literature 
from validation studies  

Standardization Definition. The presence of uniformly 
accepted procedures and protocols, 
including recognition by official carbon 
standards. Reflects the IPCC principles of 
consistency, comparability, and 
transparency.  
Indicator. Cumulative Yes (1) or No (0) 
scores to each of the following: 

• Comparable across different sites  

• Consistent results over time 

• Consistent & transparent protocols 
for data collection 

• Consistent & transparent protocols 
for data processing 

• Consistent & transparent protocols 
for data analysis 

Key informant interviews, 
scientific peer-reviewed 
literature, documentation 
from Carbon standardsb 

Cost reduction Definition. The ability of the approach to 
reduce the amount of labor and financial 
investment required for monitoring. 
Indicator. Own cost estimatesc in USD ha-1 
and year, scored according to the scale: 
5 = $0-1ha-1, 4 = $1-2ha-1, 3 = $2-3ha-1, 2 = 
$3-4ha-1, 1 = $4-5ha-1 

Key informant interviews, 
project documents  

Adoptability Definition. Likelihood of use by farmers and 
Implementing organizations 
Indicator. Cumulative Yes (1) or No (0) 
scores to each of the following:  

• Data collection requires low-medium 
effort. 

• Data collected is perceived beneficial 
by users. 

• Understood and trusted by local 
experts. 

• Can be integrated with other 
monitoring activities e.g., other 
carbon pools / non-carbon variables 
in MRV system.  

• Does not conflict with local practices, 
garners support at local and national 
level. 

Key informant interviews  
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Community 
Benefits 

Definition. Provision of benefits and/or 
avoidance of negative effects for 
communities. 
Indicator. Cumulative Yes (1) or No (0) 
scores to each of the following:  

• Enables field-extension delivery.  
• Integrates feedback loop to farmers.  
• Increases C revenue. 
• Empowers community through 

involvement in the process. 
• Other benefit 

Key informant terviews, 
project documents and 
peer-reviewed scientific 
literature 

a See Annex A.1  
b Documentation from 2 standards: VCS and Gold Standard were reviewed due to their 

dominant share of issued VCM credits 
c See Annex A.2  

 

Each point raised within the literature and/or interviews was categorized into distinct thematic 

clusters aligning to the evaluation criteria. For example, after the approaches are explained and a 

respondent is asked, “which of these do you prefer and why?”, or “how do you think this will affect 

you or the project?”. Responses related to adoptability, influence on community benefits or 

standardization were then labelled and grouped as such. Sometimes, a response addressed more 

than one evaluation criteria.  These were then further grouped per monitoring approach. Finally, 

the thematic content (now grouped per approach and relevant criterion) was evaluated in relation 

to the scoring indicators, to derive final criteria score for each approach. The exceptions to this 

process were accuracy and cost reduction criteria, which were evaluated differently. Cost 

estimations used for comparing approaches were derived from data collected during interviews, 

project documents (feasibility studies) and personal communication with experts. For examining 

accuracy of a given approach, we compare the literature-reported coefficients of correlation (R2) 

between SOC values predicted by its underlying tool/technology and SOC values observed via 

conventional laboratory techniques (L1, L2). R2 describes the strength of linear relationship 

between two variables (usually observed vs predicted) and is commonly used as an indicator of 

model prediction accuracy. An average R2 value was taken for each technology across the different 

papers reviewed. This was used as a benchmark for the theoretical accuracy of each technology. 

In practice, however, the theoretical accuracy of a tool/technology is often different from what is 

achievable considering the whole approach; an observation which is explored further in the 

discussion. However, for this comparative analysis only the potential accuracy of the underlying 

tool is considered. It was noted that the concept of accuracy (the degree of a measurement 

representation of the true value) and precision (which concerns the repeatability of results) were 

sometimes used interchangeably in the project literature and in expert interviews. The concept of 

repeatability of results is partly captured in this evaluation under the standardization criteria.   
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3.3.1. Limitations and assumptions 

Before describing the results, it is useful to highlight methodological challenges faced during this 

study. The first concerns the limited number of expert interviewees available to provide their 

perspectives on project actualities. Thus, interview findings were triangulated with the literature to 

enhance their credibility. Another limitation was that some of the monitoring approaches considered 

lacked sufficient data to develop cost estimates. As a result, some simplistic assumptions were 

made as described in the Annex A.2. Third, the analysis was also limited by a scarcity of validation 

studies on the accuracy of remote sensing for detecting land management practices (AM4/RS2). 

The same value for activity modelling (AM-) was therefore used on the assumption that they would 

be of similar value since the underlying quantification methods are the same. The comparison of 

R2 across different approaches also has its limitations, since R2 is a measure of correlation and 

high correlation values do not always mean higher prediction accuracy. For example, R2 does not 

account for model bias or consider random unexplainable variation. Nonetheless, R2 was chosen 

as an accuracy indicator as it was the most reported validation parameter across the literature 

reviewed. Model validation procedures in many studies, especially across different fields and 

purposes, are not always uniform. For instance, studies assess the accuracy of SOC predictions 

at differing depths; or even report on different types of error statistics making it difficult to compare. 

Lastly, there was often a wide range of reported R2 values for a given technology, and so the given 

average R2 values may be biased due to low sample sizes of available papers. 

4. Results 

In this chapter we first highlight the expectations from different project stakeholders on what the 

monitoring system should be able to deliver. Next, findings on how the stakeholder groups 

assessed the various monitoring approaches are shown, followed by an objective comparison of 

the approaches – given the criteria presented beforehand which integrates stakeholder 

perspectives and scientific literature.  

4.1. Stakeholder Requirements for an MRV System   

Table 3 provides a summary of what different stakeholders expect from a project MRV system. The 

most common monitoring requirements across multiple stakeholders were low process costs, high 

data accuracy, and the generation of useful soil, land and household information which could 

support decision-making on both farm and landscape levels. This corroborates with the existing 

literature (Schilling et al., 2023; Tennigkeit et al., 2013; Olander et al., 2013; Smith et al., 2020) and 

informed the criteria used in evaluating selected monitoring approaches. Accuracy is enforced by 

carbon standards and highly prioritized by project developers due to expectations from investors  
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Table 3: Identified MRV needs of the key interviewees 

Stakeholder group 
Number of 

respondents 
Needs from an MRV system 

Project proponents 2 

Low cost, high accuracy (to satisfy standards 
& buyers), generate useful information to 
report to stakeholders and to increase 
adoption 

Implementing 
organizations (usually 
NGOs and CBOs) 

5 Low field effort, low complexity  

Government / national 
research organizations  

4 
Information which supports policymaking 
(e.g., landscape health, yield, socio-economic 
data), capacity building of local community 

Technical experts  5 
Accuracy, low cost, multipurpose data, 
accessibility for farmers 

Farmers 102 
Land health information, Land/farm 
management advice, skill acquisition 

Standard setting 
organizations  

0 
(From 

literature 
only) 

Accuracy, Conservativeness, Transparency, 
Completeness, Consistency, Relevance, 
Comparability  

 

regarding quality and integrity of carbon credits. Researchers and technical experts require 

standardization of different approaches for objective comparison and time series research on 

project impacts. Governmental stakeholders require decision-making information. However, this 

also demands a certain level of standardization so that information from multiple projects within 

their geographic boundaries can be integrated. Project implementing organizations who are directly 

involved in field activities desire monitoring approaches which do not require too intensive effort in 

addition to other non-SOC monitoring activities. This is due to limited staff and resource capacity, 

which is identified by respondents as a challenge during project implementation. This is factored in 

to cost and adoptability considerations, under the operational criteria. The groups that hold the 

greatest influence on the feasibility of implementation are typically landowners and implementers. 

However, the design of the project MRV plan is commonly devised without taking their input into 

consideration. Many landowners pointed out the desire for skill development and informed land 

management, through participation in the project implementation and monitoring processes. 
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However, this was split; with much older farmers, illiterate and those with multiple livelihood sources 

being less inclined to participatory monitoring approaches that require specific training and/or extra 

data-keeping effort. Most interviewed farmers are not used to keeping farm- records and find it 

time-consuming to do so. This suggests that approaches which depend heavily on farm 

management data may place an unwelcome “data burden” on some participating landowners by 

imposing extra time and labor demands, in line with assertions by Schober (2021). This differs from 

the view of project developers and IPs who see potential community benefits in this approach to 

improve record keeping habits that aid farm business management. Investors in projects require 

the project to have additional community or biodiversity benefits to align with sustainable 

development goals and avoid reputational damage. Project developers also share this demand but 

often struggle to align practical project needs with that of local communities. 

Balancing the needs and requirements of different stakeholders regarding information and level of 

detail from project MRV was therefore identified as a challenge in conceptualizing an ‘ideal’ 

approach. 

4.2. Stakeholder perceptions about the monitoring approaches  

Given the above needs and constraints, perceptions of project stakeholder groups on the 

monitoring approaches were then analyzed from the interview data. There was a consensus among 

respondents that conventional laboratory soil measurement is expensive, due to sampling and 

equipment costs. L2 (MIR spectroscopy) was notably acknowledged as less expensive than L1 

even though both have almost identical data collection and preparation procedures. However, 

researchers pointed out that even conventional methods can be less than precise where quality 

control is lacking.  

Overall, the analytical procedures behind SOC estimation were a less-understood black box for 

landowners. This group was principally indifferent to the use of any approach, on the condition 

that sufficient information would be offered, and the soil analysis results made accessible for their 

farm management decisions. The underlying concern for this group of stakeholders was the degree 

of accessibility to the end results of the MRV process. For this reason, approaches which include 

field-based data collection were preferred, as well as analytical methods yielding quick and easily 

interpretable results such as mobile soil scanners. When it was properly explained, landowners 

appreciated the potential cost and effort saving benefits of remote sensing but expressed concern 

over the inaccessibility of results since it involves off-farm data collection and analysis.  

Implementing organizations, too, often rely on project developers to establish the MRV system 

and provide necessary training and resources for implementation. Therefore, it is unlikely that this 

group may be outrightly opposed to any monitoring approach. Those interviewed had limited 
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technical understanding about carbon accounting requirements. For instance, even though they 

may engage in data collection for activity modelling, they lack the expertise needed to parameterize 

and run the carbon model. Similarly, they possessed limited knowledge about remote sensing and 

other soil analytical methods. Due to their preference for labor saving approaches, implementers 

favored data collection methods such as farmer-sourced data or approaches which group multiple 

plots together. They favored mobile soil scanners for the same reason since farmers could 

potentially be trained to use them - however some expressed skepticism about the reliability of 

results. This sentiment was re-echoed by researchers and government representatives who 

questioned the lack of transparency around the proprietary calibration data used in such tools.  

“The scanners you talk about on the ground that they can give you results within 2-3 minutes or 10 

minutes, they use dry chemistry. Dry chemistry does not go into so many things in the soil and it's 

very easy for dry chemistry to give you a photocopy of another soil test. I did one. I checked on 

some 54 soil tests one day using dry chemistry and I was surprised when I realized that 10 soil 

samples had the same figures. These are different farms. Dry chemistry is cheaper, wet chemistry 

would be expensive, but [wet chemistry] provides very precise and dependable soil results”. 

Researcher 

The quality of collected data was of greater importance to technical experts and project 

proponents when considering the various approaches. Multiple respondents asserted that current 

modelling approaches were ineffective.  

‘The result of an activity-based approach are theoretical results and by definition wrong and I think 

we shouldn't be satisfied with that. We should have higher aspirations than that’.  

Remote sensing expert 

However, there was a general lack of consensus among experts on which data collection process 

or analytical methods yields best results as well as on what the required accuracy thresholds of 

analytical methods should be. Apart from perceived high costs, the biggest drawback of direct soil 

measurement approaches for project proponents is the fact that the observation of significant 

SOC stock changes over time requires long measurement intervals (3-5 years) due to the slow 

magnitude of change relative to stock size. Many projects require more frequent SOC quantification 

to generate carbon revenue which sustains project activities in cases where no other sources of 

funding are available. Modelling approaches have the advantage that they allow more frequent 

monitoring intervals and may be preferred for this reason despite limited accuracy performance. 

The role of remote sensing in monitoring produced the highest split of responses within any key 

informant group. Several technical experts opined that remote sensing is too early-stage for use in 

SOC accounting due to computing uncertainties, and a widespread lack of technical expertise. 

Therefore, it would be better suited for the collection of readily available auxiliary data (e.g., soil 

texture or land use classes for stratification). One remote-sensing expert was of the contrary 
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opinion that RS technology offers unexplored potential to improve monitoring accuracy and that the 

collection of auxiliary data is a sub-optimal use of remote sensing potential:  

“[Yes], it is something you can do with remote sensing. There is some ability to monitor whether a 

farmer has done tillage or no tillage, but not what we want to focus on, because then you're using 

something that can be very accurate to measure something whereby subsequently the result of 

that will be very inaccurate. If you want to use remote sensing to establish whether they have 

applied tillage or not, and then simply take a theoretical result of the application of tillage for the 

actual amount of carbon credits, we believe that’s the wrong way around”  

Remote sensing expert.  

4.3. Evaluation of Monitoring Approaches Using Selected Criteria 

We evaluated the different monitoring approaches based on the selected criteria by presenting 

their performance in spider diagrams. For reasons of visualization we present the performances 

differentiated by conventional approaches, new monitoring approaches monitoring approaches 

based on measurements and new approaches based on modelling (see Figure 4).  

4.3.1. Cost & Accuracy  

Impact of data collection methods  

Overall, the choice of data collection method was found to have a higher impact on total monitoring 

costs than the choice of data analysis method. This was especially true for activity monitoring (AM) 

approaches which are the current status quo for agricultural carbon projects. For example, the AM1 

approach where data is collected from all participants on a yearly basis could cost up to 10 times 

more than AM3 where only a random sample is collected yearly with no significant difference in 

accuracy between both approaches. This is because statistically, beyond a certain point, only a 

minimal increase in accuracy is gained from increasing sample size whereas the costs continue to 

increase. Laboratory measurements L1 and L2 were the most expensive due to their sample 

collection requirements although L2 was notably less expensive due to the rapid processing of 

samples allowed by spectroscopic analysis.  

In the case of proximal sensing, it was found that a farmer-led data collection approach (PS1) could 

significantly reduce costs compared to commercial mobile testing services (PS2) while providing 

similar potential accuracy and additional community benefits due to the participatory nature of PS1 

(farmer-led) approach. ‘Potential’ accuracy here is emphasized because while the underlying 

technologies are the same, the real, achieved accuracy of the PS1 approach depends highly on 

the capacity of smallholders to use these devices and on the existence of standard protocols / 

quality control procedures to ensure consistent sample collection conditions and results.  
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Figure 4: Comparison of the different monitoring approaches
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While modelling approaches are generally similar in potential accuracy, the achieved accuracy of 

AM1 (self-reported) approach may be lower in practice because the quality of data reported by 

farmers is often unsatisfactory (Schober, 2021).This is true for several reasons: non-measurement 

or usage of non-standard measurement units by smallholder farmers, social desirability bias in 

answering questions e.g., about production or fertilizer use, and lack of information that can be 

used to cross-check self-reported data. Because of these issues, a lot of time is spent on 

subsequent quality control and correction which often defeats the initial aims (convenience and 

cost) of farmer self-reporting. The data collection process for AM4/RS2 (modelling based on 

remotely sensed activity data) was also assessed to potentially impact the estimated accuracy of 

input data. However, the exact degree of impact was difficult to determine as this approach is not 

yet widely used and so available literature on this was scarce.  AM3 (modelling based on a sample 

of farms) is currently the least expensive of the AM approaches, although AM4/RS2 (modelling 

based on remotely sensed activity data) provides chances to further reduce the cost and effort 

associated with activity data collection. 

Impact of analysis methods   

In general, the choice of analytical procedures was found to have a higher impact on the potential 

accuracy of a given monitoring approach than the data collection method. This is not to say that 

the achievable accuracy is not influenced to some degree by the data collection methods used. For 

example, laboratory approaches can be influenced by the sampling error and effectiveness of 

sample preparation steps (i.e., crushing, sieving, and drying) while the certainty of AM approaches 

rely heavily on the input data used for modelling. However, approaches involving laboratory-based 

sample analysis such as L1(dry combustion) and L2 (MIR spectroscopy) are typically the most 

accurate when contrasted with activity-based modelling approaches (AM-) which are generally of 

lower accuracy due to their indirect/theoretical nature, assuming best-practice guidelines for data 

collection is followed in both cases. Apart from the AM approaches and L1, other approaches 

considered are in fact based on spectroscopic analysis, simply used in combination with different 

data collection approaches. Therefore, spectroscopic analyses introduce an opportunity to maintain 

the accuracy of conventional lab-based analyses while driving down costs via in-situ or satellite 

data collection. Field-based proximal sensing tools (PS-) already show reasonable potential 

accuracy (Viscerra Rossel et al., 2006; Stevens et al., 2008; Sorenson et al., 2017), but lack the 

level of standardization to achieve consistency and comparability. Remote sensing-based 

monitoring (RS1, RS2) offers the best long-term cost performance, but the level of accuracy varies 

greatly for different studies (See Annex A.1) due to varying analytical techniques applied. No 

consensus exists on techniques to handle atmospheric cloud cover, the interruption of bare soil by 

vegetation and crop residues or to deal with varying soil conditions (e.g., moisture, texture, surface 

roughness) in fields during satellite or proximal data collection (van Wesemael et al., 2021). 
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Furthermore, as World Bank (2021) points out, most satellite sensors only measure surface (1cm) 

soil reflectance (the same is also true for proximal sensors) while carbon storage is usually 

analyzed to 30cm depth. These challenges can be overcome with specialized processing methods. 

For example, good results have been demonstrated for normalizing the effect of in-field 

moisture/texture variations using statistical techniques such as External Parameter 

Orthogonalization (EPO) (Nawar et al., 2020; Veum et al., 2018) and Direct Standardization (DS) 

(Angeloupolou et al., 2020; Ji & Viscerra Rossel, 2015). Statistical techniques can also be applied 

to surface spectral measurements (Kusumo, 2018; Lu et al., 2019) to correlate soil depth to carbon 

content, and Zepp et al., 2021 discuss an SCMap procedure to composite multi-temporal satellite 

imagery, allowing data to be obtained from different periods in the year where bare soil is visible. 

These methods, however, require high expertise. 

4.3.2. Community benefits  

PS (proximal sensing) approaches were found to provide the most positive impact on community 

benefits by enabling community participation, feedback, and in-field advisory, while saving costs 

thus allowing more carbon revenue flow to the communities. Remote sensing provided the least 

community benefits due to its detached, off-farm nature. For laboratory approaches, we theorize 

that the associated on-field benefits and greater measurement accuracy are outweighed by the 

high implementation costs which will take away from community benefits (if implementation costs 

become higher than payment from credits and therefore project is not able to self-fund or show 

benefits). The same may apply to other higher-cost monitoring approaches such as AM1 (self-

reported) and AM2 (yearly full census), when compared to lower cost RS approaches which leave 

more carbon revenue available.  

4.3.3. Standardization and adoption 

As emphasized by the IPCC GHG accounting principles, standard protocols and quality control 

measures play a key role in aiding comparability of results over time and across projects. The 

Standard Operating Procedures of the Soil-Plant Spectral Diagnostics Laboratory of World 

Agroforestry Centre (ICRAF) provides widely adopted protocols for spectral analysis in the lab (L2). 

Approaches based on Proximal sensing (PS-) and Remote Sensing (RS-) were found to be less 

standardized than others. The use of Vis-NIR based proximal sensing has been recently endorsed 

by carbon certification standard, VCS under the VM0042 methodology, provided that standard 

measurement protocols are used such as that found in Annex B of Viscerra Rossel et al. (2016). 

However, this is not yet widely used/adopted. Due to a lack of sample processing when proximal 

sensing is used, it is important that such standardized measurement protocols are applied to 

minimize inconsistencies. The literature on RS-based approaches features different combinations 
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of steps and techniques to predict SOC from remotely sensed data. No guidance exists on the 

selection of modelling techniques, covariates or even harmonized data sources for model input. 

Therefore, results from different sources are bound to provide different levels of accuracy. Error 

reporting is also not standardized, and many sources of uncertainty are not propagated into the 

results (Takoutsing et al., 2021). Moreover, these approaches are not yet endorsed by carbon 

standards and therefore lack precedented use in carbon projects. This was found to play an 

important role influencing adoption; less standardized methods were perceived with skepticism by 

experts and project proponents which reduces the likelihood of adoption. It follows that adoption 

issues are more likely to be faced by less understood technologies, since trust and transparency 

of monitoring approaches were found to be important factors for national and local experts. In 

contrast, landowners and implementers had less significant power in the adoption decision since 

the monitoring design is usually done by the project developer. However, if capacities are lacking, 

or there is a lack of synergies with other non-SOC monitoring activities, certain monitoring 

approaches will not be effectively adopted by those on the ground. 

5. Discussion: Challenges, Opportunities and Recommendations  

Figure 5 highlights the role of featured tools in the different monitoring approaches. Domain a (direct 

measurement) features conventional wet and dry laboratory methods (L1 and L2) as well as remote 

and proximal sensing of SOC content (RS1, PS1. PS2). Domain b (activity-based modelling) 

features paper, mobile or satellite-based surveys of land practices as input to models. A discussion 

on specific issues and recommendations related to selected approaches follows below.  
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Figure 5: Approaches and tools in the different SOC Monitoring Domains 

 

5.2. The promise of remote sensing  

Indeed, the advancement of satellite imagery with high spectral resolution enables cost 

improvements on current data collection approaches while leveraging the accuracy potential of 

spectroscopic analysis. Collection and processing of plot-level soil or land management data via 

satellite is however still associated with several challenges.  

 

RS1 (Soil measurement with remote sensing) 

Technical challenges faced in collecting soil data via satellite have already been briefly discussed 

in the results above and in-depth in the literature (Shepherd et al., 2022; Zengh et al., 2014; van 

Wesemael et al., 2021). Expertise required for highly specialized processing is lacking in many 

developing countries and must be encouraged for adoption of this approach. This may be 

supported by the establishment of geostatistical toolboxes / guidelines to aid local experts in the 

selection of pre-processing methods, covariates, models, and validation/error accounting 

techniques. Overall, the lack of standardized procedures for RS-based approaches lead to 

conflicting reports on the accuracy of this approach in peer-reviewed studies. Some commercial 

organizations already market MRV solutions3 promising accurate results with this technology. 

However, none of these are verified yet by a major carbon standard. Moreover, because these 

organizations have proprietary business models, they do not disclose their methods transparently 

and have not yet published scientific information that has undergone peer review. Consequently, 

the methods they employ lack a foundation for comparison. Not-for-profit organizations are 

increasingly testing and piloting such solutions4 which may be key to democratizing the technology 

and making it accessible for smallholders. It is essential that carbon certification standards provide 

oversight on these processes for alignment market needs. Additionally, the accuracy of the RS1 

approach is dependent on the soil data used for calibration. This often requires intensive field 

sampling efforts at the initial stage of model calibration which could be prohibitive.  Collaborative 

effort is needed to establish sufficient soil spectral libraries in different regions for calibration of 

remote sensing models (Shepherd et al., 2022). Such libraries can be designed for expansion over 

time through the collaborative effort of crowdsourcing and communal sampling. Long-term project 

trials are also necessary to compare remote sensing performance across time and cropping 

seasons. The World Agroforestry Center (ICRAF) for example using their publicly available Land 

Degradation Surveillance Framework (LDSF) has been supporting satellite-based soil organic 

 
3 For example, Boomitra, Earthbanc. 
4 e.g., this GIZ funded project  

https://boomitra.com/
https://earthbanc.io/
file:///C:/Users/Regina/Nextcloud_Athena/490c/Research%20Projects/GIZ%20-%20UNIQUE%20-%20AHA/M.Sc.%20thesis%20Ada%20Okoli%20-%20MRV%20and%20participation%20of%20farmers/SOC%20paper/giz2023-en-i4Ag-satellite-based-soil-carbon-monitoring.pdf
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carbon monitoring in various project contexts which could serve as the basis for such long-term 

comparisons.  

 

AM4/RS2 (remotely sensed activity modelling) 

Authors (Hagen et al., 2020; World Bank, 2021; Zheng et al., 2014) have reported the successful 

use of AM4/RS2 for detecting cover cropping, crop-rotation, and no-tillage practices (See Bégué 

et al., 2019 for an extensive review). On the carbon market, the approach is featured in protocols 

for detecting agroforestry practices e.g., Rabobank’s Acorn methodology5 approved under the Plan 

Vivo standard, and those requiring surveys of livestock numbers e.g., Verra’s VM0032. More recent 

carbon initiatives pioneering the AM4/RS2 approach include the Carbon Plus Grasslands 

Methodology6 developed by independent marketplace providers Regen Network Development Inc, 

and the CIBO Technologies program CIBO Initiative for Scaling Regenerative Agriculture7. The 

latter two are currently in the process of being developed under the VM0042 methodology of VCS 

Standard by Verra. In addition to broader remote sensing concerns already mentioned, this 

approach is limited by the difficulty in detecting a wider range of activities such as fertilizer use, 

composting or residue burning remotely. Moreover, greater variability in when and how farmers 

implement practices could also make remote activity monitoring more difficult, especially on smaller 

plots. So far, pilot trials have been done on large commercial size farms in North America and need 

to be conducted on smaller plots, covering a range of land use types, as typically occurring in the 

context of smallholders in developing countries. Further studies on the accuracy of this approach 

are needed to enhance the limited body of knowledge. As a Domain b approach, one important 

advantage of RS2/AM4 for project proponents is that it allows for more frequent MRV cycles, 

thereby making available cash-flow for project implementation. Activity monitoring is, moreover, 

essential in projects to monitor practice adoption over the project area even beyond its requirement 

for SOC modelling. RS2/AM4 could reduce not only the costs of activity data collection but also the 

risk that the process poses a data burden to certain smallholders.   

A new challenge for community benefits, however, becomes the integration of feedback loops in 

such a system. Without ongoing advisory services, smallholders lack the technical knowledge and 

resources to sustain implementation of project activities and could easily revert to the baseline. 

Therefore, field visits remain important to sustain implementation of smallholder carbon schemes 

and keep the project functioning. Wehinger et al. (2023) found in a recent ELD study of WKSCP 

that neighboring farmers in the project area, on witnessing evidence of positive economic 

outcomes, have high interest to adopt the project’s sustainable land management practices but are 

hindered by a limited availability of extension support. It is therefore worth rethinking the value of 

 
5 More about Acorn here  
6 Carbon Plus Grasslands Methodology here  
7 See the project listing on Verra registry here  

https://www.planvivo.org/acorn
https://app.regen.network/methodologies/carbonplus-grasslands
https://registry.verra.org/app/projectDetail/VCS/3351
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such savings from reduced field monitoring visits since field visits are critically needed to foster 

adoption and optimize extension delivery. In fact, monitoring and extension are strongly intertwined 

in the implementation of current projects using the AM- approach (personal communication, project 

implementing partner). Projects using remote sensing-based approaches (RS1 and RS2/AM4) will 

need to carefully design feedback and advisory components which can sustain the community and 

environmental benefits of such projects. This may be easily addressed in regions where 

smartphone access is common since digital tools can be designed that recommend management 

practices to landowners based on remote sensing analysis. The adoption of such approaches 

should be tested where it is a possibility. However, in places like the case-study area where 

smartphone access is rare and/or internet connectivity is a challenge, this becomes more complex. 

 

5.3.  Proximal sensing devices 

In-situ spectroscopy appears to overcome this problem by producing potentially accurate soil 

analysis, reducing sampling error by enabling sampling on a greater number of fields while keeping 

costs low and maintaining community benefits through field visits for data collection. Since field-

level data collection efforts could make this technology labor-intensive across thousands of 

hectares, devices such as SCANS or Deep-C which can be mounted on farm vehicles (e.g., 

tractors) have been proposed. This approach is however not considered in this study as we 

consider this more feasible for larger, industrial fields where mechanization is routinely used. For 

smallholder farms, devolving data collection to farmers could reduce logistical costs while offering 

additional community benefits via participation and skills development. A few farmers can volunteer 

to be trained in monitoring with this device and may even offer this service to other farmers in the 

project area for additional income. A requirement for this is that soil scanners are easily operable 

by smallholder farmers and provide results that are translated for farmers into practicable advice. 

For example, the SoilPal (https://ujuzikilimo.com/soil-pal) scanner developed for rural farmers in 

Kenya which delivers SMS results in the absence of internet connectivity. Such tools could be 

programmed with additional features that allow the detailed soil data and GIS coordinates to be 

uploaded upon each scan to an external database for expert analysis – this would also rule out the 

possibility of biased reporting by farmers who may be incentivized to do so. Less complex Standard 

Operating Protocols must also be developed for the use of these devices which consider both 

quality requirements and ease of use by farmers. Finally, proximal sensing devices like remote 

sensing must find a way to control or account for soil moisture variations in field. This is already 

addressed above. 

https://www.bing.com/search?pglt=41&q=SCANS+soil+carbon&cvid=063cc3626f8341eea304d1a82142db34&aqs=edge..69i57j1001i64i1010j69i11004.5654j0j1&FORM=ANAB01&PC=U531
https://www.agriculture.com/news/technology/soil-health-institute-to-develop-soil-carbon-measurement-and-monitoring-system#:~:text=DeepC%20will%20provide%20standardized%20carbon%20sequestration%20monitoring%20needs,the%20current%20infrastructure%20of%20national%20soil%20spectroscopy%20libraries.
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6. Conclusion 

This study set out to evaluate approaches for monitoring soil carbon in smallholder agricultural 

projects, according to their accuracy, level of standardization, cost, adoptability, and community 

benefits. These criteria were identified through project stakeholder interviews and literature search 

as important for the success of the overall MRV system. This research investigated the use of 

remote sensing, soil spectroscopy, and soil models in tropical/subtropical developing countries. 

The current limited availability of suitable methods for smallholder agricultural carbon projects in 

the voluntary market underlines the study's importance. 

Overall, it was found that data collection is more associated with monitoring costs while choice of 

data analysis methods has a greater impact on accuracy. This emphasizes the need for a systems 

approach, assessing the entire MRV system rather than the focus on individual technologies when 

considering carbon projects. Soil spectroscopy has been demonstrated as a technology which can 

provide rapid and accurate soil analysis at scale. Combining this with lower cost data collection 

such as in-field scanners or remotely sensed spectral imagery was found to offer the best cost-

accuracy performance for repeated soil measurements. However, field-level data collection 

remains essential for monitoring adoption and supporting advisory services, which are both keys 

to project continuity and to delivering community benefits. The use of smartphone technology was 

identified as a potential tool to integrate feedback loops and bridge this gap if accessible to farmers 

in a project area. Practice monitoring via remote sensing can replace farm surveys and should be 

explored further in the context of smallholder farmers for a wider range of project land use 

scenarios.   

Proximal sensing offers rapid data collection with high accuracy analysis and the ability to 

strengthen participation and capacity building of local actors e.g., via trained farmer 

representatives. However, this approach requires standardization through widely accepted quality 

control protocols. The same is true for remote sensing approaches which lack common protocols 

for calibration, making comparability within and among projects difficult. Moreover, the use of 

satellite-based spectral measurements still lacks approval by major carbon certification standards. 

Hence there is a basic requirement to develop clear data collection protocols for the use of in-situ 

and remote technologies in soil carbon monitoring, as well as performance benchmarks which are 

based on well-established conventional methods (‘gold standards’). These efforts should be done 

together with major carbon certification standards. Other techniques which are not covered in this 

study but should be further explored are the use of spectral sensors mounted on airborne or field 

vehicles.  
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To close initial cost/effort gaps associated with calibrating accurate spectral libraries (mainly soil 

sampling costs), there is a need to synergize efforts from different actors. For example, joint 

investment towards developing open-source libraries of soil spectral and covariate data which may 

be used for several purposes apart from soil carbon accounting. 

Overall, the level of technical skill required to fulfil the data collection or analytical requirements of 

soil carbon monitoring may lead to adoption gaps for many of the newer approaches and could 

hinder small-scale projects which would otherwise contribute to climate action. Investing in 

developing countries to build local skills in new SOC monitoring approaches is crucial. The 

development of user-friendly decision-making tools such as automated dashboards and toolboxes8 

are also recommended to bring long-term cost savings and increased adoption. 

On a final note, we highlight that the frequent focus on accuracy as the sole purpose of GHG 

accounting might be hindering the adoption of otherwise effective project SOC accounting 

approaches that fulfill various other requirements. Arguably, the principle of conservativeness if 

applied balances out the requirement for accuracy9. For instance, monitoring approaches with 

lower accuracy may still be suitable, if all uncertainties are properly quantified and reported to allow 

uncertainty deductions of final estimates. The investment decision would then hinge on whether 

the net value of conservative estimates justifies the effort invested in the project. Nonetheless, the 

principle of conservatism provides project proponents with added flexibility in selecting an 

appropriate monitoring approach, enabling them to strike a better balance among different 

requirements. It is in any case crucial, to fulfil the principle of transparency that all approaches 

apply appropriate error propagation techniques for uncertain data sources.

 
8 Examples include the FAO Land Resource Planning Toolbox and the Climate Tool box by University of California, 
USA  
9 Verra in fact acknowledges that although accuracy should be pursued as far as possible, the high cost of monitoring 
of some types of GHG emissions and removals, and other limitations make accuracy difficult to attain in many cases. In 
these cases, conservativeness may serve as a moderator to accuracy to maintain the credibility of project and program 
GHG quantification. (Verra 2023. VCS Standard v4.4) 

https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/en/
https://climatetoolbox.org/


 

 
28 

7. References  

Ayala Izurieta, J. E., Jara Santillán, C. A., Márquez, C. O., García, V. J., Rivera-Caicedo, J. P., Van 
Wittenberghe, S., Delegido, J., & Verrelst, J. (2022). Improving the remote estimation of soil organic 
carbon in complex ecosystems with Sentinel-2 and GIS using Gaussian processes regression. Plant 
and Soil, 479(1–2), 159–183. https://doi.org/10.1007/s11104-022-05506-1 

Bai, Z., Xie, M., Hu, B., Luo, D., Wan, C., Peng, J., & Shi, Z. (2022). Estimation of Soil Organic Carbon Using 
Vis-NIR Spectral Data and Spectral Feature Bands Selection in Southern Xinjiang, China. Sensors, 
22(16), 6124. https://doi.org/10.3390/s22166124 

BCG & Shell 2022. The voluntary carbon market: 2022 insights and trends. Available at 
https://www.shell.com/shellenergy/othersolutions/carbonmarketreports 

Bégué, A., Arvor, D., Bellon, B., Betbeder, J., De Abelleyra, D., P. D. Ferraz, R., Lebourgeois, V., Lelong, C., 
Simões, M., & R. Verón, S. (2018). Remote Sensing and Cropping Practices: A Review. Remote 
Sensing, 10(2), 99. https://doi.org/10.3390/rs10010099 

Berry, N. J., & Ryan, C. M. (2013). Overcoming the risk of inaction from emissions uncertainty in smallholder 
agriculture. Environmental Research Letters, 8(1), 011003. https://doi.org/10.1088/1748-
9326/8/1/011003 

Bhunia, G. S., Kumar Shit, P., & Pourghasemi, H. R. (2019). Soil organic carbon mapping using remote 
sensing techniques and multivariate regression model. Geocarto International, 34(2), 215–226. 
https://doi.org/10.1080/10106049.2017.1381179 

Böttcher, H., Eisbrenner, K., Fritz, S., Kindermann, G., Kraxner, F., McCallum, I., & Obersteiner, M. (2009). 
An assessment of monitoring requirements and costs of ‘Reduced Emissions from Deforestation and 
Degradation’. Carbon Balance and Management, 4(1), 7. https://doi.org/10.1186/1750-0680-4-7 

Bonanno, A. S., & Griffiths, P. R. (1993). Short-Wave near Infrared Spectra of Organic Liquids. Journal of 
Near Infrared Spectroscopy, 1(1), 13–23. https://doi.org/10.1255/jnirs.2 

Bricklemyer, R. S., & Brown, D. J. (2010). On-the-go VisNIR: Potential and limitations for mapping soil clay 
and organic carbon. Computers and Electronics in Agriculture, 70(1), 209–216. 
https://doi.org/10.1016/j.compag.2009.10.006 

Chang, C.-W., & Laird, D. A. (2002). NEAR-INFRARED REFLECTANCE SPECTROSCOPIC ANALYSIS OF 
SOIL C AND N: Soil Science, 167(2), 110–116. https://doi.org/10.1097/00010694-200202000-00003 

Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., & Balesdent, J. (2019). Increasing organic 
stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 
41–52. https://doi.org/10.1016/j.still.2018.04.011 

Climate Action Reserve. (2019). Standardized GHG Accounting for Soil Organic Carbon Accrual on Non-
Forest Lands: Challenges and Opportunities. Climate Action Reserve. 

Cozzolino, D., Cynkar, W. U., Dambergs, R. G., Shah, N., & Smith, P. (2013). In Situ Measurement of Soil 
Chemical Composition by Near-Infrared Spectroscopy: A Tool Toward Sustainable Vineyard 
Management. Communications in Soil Science and Plant Analysis, 44(10), 1610–1619. 
https://doi.org/10.1080/00103624.2013.768263 

Diwani, T. N., Asch, F., Becker, M., & Mussgnug, F. (2013). Characterizing farming systems around 
Kakamega Forest, Western Kenya, for targeting soil fertility–enhancing technologies. Journal of Plant 
Nutrition and Soil Science, 176(4), 585–594. https://doi.org/10.1002/jpln.201200036 

Dvorakova, K., Heiden, U., & van Wesemael, B. (2021). Sentinel-2 Exposed Soil Composite for Soil Organic 
Carbon Prediction. Remote Sensing, 13(9), 1791. https://doi.org/10.3390/rs13091791 

Dvorakova, K., Shi, P., Limbourg, Q., & van Wesemael, B. (2020). Soil Organic Carbon Mapping from 
Remote Sensing: The Effect of Crop Residues. Remote Sensing, 12(12), 1913. 
https://doi.org/10.3390/rs12121913 

FAO, GSP, IPCC, ITPS, UNCCD, SPI, and WMO. (2020). A protocol for measurement, monitoring, reporting 
and verification of soil organic carbon in agricultural landscapes: GSOC MRV protocol. 



 

 
29 

Farina, R., Coleman, K., & Whitmore, A. P. (2013). Modification of the RothC model for simulations of soil 
organic C dynamics in dryland regions. Geoderma, 200–201, 18–30. 
https://doi.org/10.1016/j.geoderma.2013.01.021 

Fidêncio, P. H., Poppi, R. J., & de Andrade, J. C. (2002). Determination of organic matter in soils using radial 
basis function networks and near infrared spectroscopy. Analytica Chimica Acta, 453(1), 125–134. 
https://doi.org/10.1016/S0003-2670(01)01506-9 

Francaviglia, R., Baffi, C., Nassisi, A., Cassinari, C., & Farina, R. (2013). USE OF THE “ROTHC” MODEL 
TO SIMULATE SOIL ORGANIC CARBON DYNAMICS ON A SILTY-LOAM INCEPTISOL IN 
NORTHERN ITALY UNDER DIFFERENT FERTILIZATION PRACTICES. EQA - International Journal 
of Environmental Quality, 17-28 Pages. https://doi.org/10.6092/ISSN.2281-4485/4085 

Gomez, C., Viscarra Rossel, R. A., & McBratney, A. B. (2008a). Soil organic carbon prediction by 
hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma, 
146(3–4), 403–411. https://doi.org/10.1016/j.geoderma.2008.06.011 

Intergovernmental Panel on Climate Change (IPCC), 2006. IPCC Guidelines for National Greenhouse Gas 
Inventories – Volume 4. Egglestone, H.S., L. Buendia, K. Miwa, T. Ngara and K. Tanabe (Eds). 
Intergovernmental Panel on Climate Change (IPCC), IPCC/IGES, Hayama, Japan. http://www.ipcc-
nggip.iges.or.jp/public/2006gl/vol4.html 

Ji, W., Viscarra Rossel, R. A., & Shi, Z. (2015). Accounting for the effects of water and the environment on 
proximally sensed vis-NIR soil spectra and their calibrations: Accounting for the effects of water on 
field soil spectra. European Journal of Soil Science, 66(3), 555–565. 
https://doi.org/10.1111/ejss.12239 

Jia, X., Chen, S., Yang, Y., Zhou, L., Yu, W., & Shi, Z. (2017). Organic carbon prediction in soil cores using 
VNIR and MIR techniques in an alpine landscape. Scientific Reports, 7(1), 2144. 
https://doi.org/10.1038/s41598-017-02061-z 

Kamoni, P. T., Gicheru, P. T., Wokabi, S. M., Easter, M., Milne, E., Coleman, K., Falloon, P., Paustian, K., 
Killian, K., & Kihanda, F. M. (2007). Evaluation of two soil carbon models using two Kenyan long term 
experimental datasets. Agriculture, Ecosystems & Environment, 122(1), 95–104. 
https://doi.org/10.1016/j.agee.2007.01.011 

Kodaira, M., & Shibusawa, S. (2013). Using a mobile real-time soil visible-near infrared sensor for high 
resolution soil property mapping. Geoderma, 199, 64–79. 
https://doi.org/10.1016/j.geoderma.2012.09.007 

Kuang, B., Tekin, Y., & Mouazen, A. M. (2015). Comparison between artificial neural network and partial 
least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, 
pH and clay content. Soil and Tillage Research, 146, 243–252. 
https://doi.org/10.1016/j.still.2014.11.002 

Kühnel, A., & Bogner, C. (2017). In-situ prediction of soil organic carbon by vis-NIR spectroscopy: An efficient 
use of limited field data: In-situ prediction of SOC. European Journal of Soil Science, 68(5), 689–702. 
https://doi.org/10.1111/ejss.12448 

Kusumo, B. H. (2018). In Situ Measurement of Soil Carbon with Depth using Near Infrared (NIR) 
Spectroscopy. IOP Conference Series: Materials Science and Engineering, 434, 012235. 
https://doi.org/10.1088/1757-899X/434/1/012235 

Kweon, G., Lund, E., & Maxton, C. (2013). Soil organic matter and cation-exchange capacity sensing with 
on-the-go electrical conductivity and optical sensors. Geoderma, 199, 80–89. 
https://doi.org/10.1016/j.geoderma.2012.11.001 

Lee, J., Viscarra Rossel, R. A., Luo, Z., & Wang, Y. P. (2020). Simulation of soil carbon dynamics in Australia 
under a frameworkthat better connects spatially explicit data with Rᴏᴛʜ C [Preprint]. Biogeochemistry: 
Land. https://doi.org/10.5194/bg-2020-150 

Li, S., Li, J., Li, C., Huang, S., Li, X., Li, S., & Ma, Y. (2016). Testing the RothC and DNDC models against 
long-term dynamics of soil organic carbon stock observed at cropping field soils in North China. Soil 
and Tillage Research, 163, 290–297. https://doi.org/10.1016/j.still.2016.07.001 

Mburu, J., & Kiragu-Wissler, S. (2017). Sustainable Land Management in Western Kenya: An Analysis of 
Project-Based Interventions. 

http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html


 

 
30 

Milori DMPB, Segnini A, da Silva WTL, Posadas A, Mares V, Quiroz R, Martin-Neto L. 2011. Emerging 
techniques for soil carbon measurements. CCAFS Working Paper no. 2. CGIAR Research Program 
on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Available online 
at: www.ccafs.cgiar.org 

Miltenberger, O., Jospe, C., & Pittman, J. (2021). The Good Is Never Perfect: Why the Current Flaws of 
Voluntary Carbon Markets Are Services, Not Barriers to Successful Climate Change Action. Frontiers 
in Climate, 3, 686516. https://doi.org/10.3389/fclim.2021.686516 

Mondini, C., Cayuela, M. L., Sinicco, T., Fornasier, F., Galvez, A., & Sánchez-Monedero, M. A. (2017). 
Modification of the RothC model to simulate soil C mineralization of exogenous organic matter 
[Preprint]. Biogeochemistry: Soils. https://doi.org/10.5194/bg-2016-551 

Mwongera, C., Mwungu, C., Kinyua, I., & Karanja, S. (2017). Prioritizing climate-smart agriculture practices 
in Western Kenya (Working Paper No. 442; CIAT Publication, p. 21). International Center for Tropical 
Agriculture (CIAT). http://hdl.handle.net/10568/82530 

Nawar, S., Abdul Munnaf, M., & Mouazen, A. M. (2020). Machine Learning Based On-Line Prediction of Soil 
Organic Carbon after Removal of Soil Moisture Effect. Remote Sensing, 12(8), 1308. 
https://doi.org/10.3390/rs12081308 

Ngome, A. F., Becker, M., Mtei, K. M., & Mussgnug, F. (2011). Fertility management for maize cultivation in 
some soils of Western Kenya. Soil and Tillage Research, 117, 69–75. 
https://doi.org/10.1016/j.still.2011.08.010 

Nocita, M., Stevens, A., Noon, C., & van Wesemael, B. (2013). Prediction of soil organic carbon for different 
levels of soil moisture using Vis-NIR spectroscopy. Geoderma, 199, 37–42. 
https://doi.org/10.1016/j.geoderma.2012.07.020 

Olander, L., Wollenberg, E., Tubiello, F., & Herold, M. (2013). Advancing agricultural greenhouse gas 
quantification. Environmental Research Letters, 8(1), 011002. https://doi.org/10.1088/1748-
9326/8/1/011002 

Paul, C., Bartkowski, B., Dönmez, C., Don, A., Mayer, S., Steffens, M., Weigl, S., Wiesmeier, M., Wolf, A., & 
Helming, K. (2023). Carbon farming: Are soil carbon certificates a suitable tool for climate change 
mitigation? Journal of Environmental Management, 330, 117142. 
https://doi.org/10.1016/j.jenvman.2022.117142 

Paustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., DeLonge, M., Dungait, J., Ellert, B., Frank, S., 
Goddard, T., Govaerts, B., Grundy, M., Henning, M., Izaurralde, R. C., Madaras, M., McConkey, B., 
Porzig, E., Rice, C., Searle, R., … Jahn, M. (2019). Quantifying carbon for agricultural soil 
management: From the current status toward a global soil information system. Carbon Management, 
10(6), 567–587. https://doi.org/10.1080/17583004.2019.1633231 

Peng, X., Shi, T., Song, A., Chen, Y., & Gao, W. (2014). Estimating Soil Organic Carbon Using VIS/NIR 
Spectroscopy with SVMR and SPA Methods. Remote Sensing, 6(4), 2699–2717. 
https://doi.org/10.3390/rs6042699 

Reeves, J. B., & McCarty, G. W. (2001). Quantitative Analysis of Agricultural Soils Using near Infrared 
Reflectance Spectroscopy and a Fibre-Optic Probe. Journal of Near Infrared Spectroscopy, 9(1), 25–
34. https://doi.org/10.1255/jnirs.291 

Rumpel, C., Amiraslani, F., Chenu, C., Garcia Cardenas, M., Kaonga, M., Koutika, L.-S., Ladha, J., Madari, 
B., Shirato, Y., Smith, P., Soudi, B., Soussana, J.-F., Whitehead, D., & Wollenberg, E. (2020). The 
4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon 
sequestration as a sustainable development strategy. Ambio, 49(1), 350–360. 
https://doi.org/10.1007/s13280-019-01165-2 

S. Veum, K., A. Parker, P., A. Sudduth, K., & H. Holan, S. (2018). Predicting Profile Soil Properties with 
Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization. Sensors, 
18(11), 3869. https://doi.org/10.3390/s18113869 

Saiz, G., & Albrecht, A. (2016). Methods for Smallholder Quantification of Soil Carbon Stocks and Stock 
Changes. In T. S. Rosenstock, M. C. Rufino, K. Butterbach-Bahl, L. Wollenberg, & M. Richards (Eds.), 
Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder 
Agriculture (pp. 135–162). Springer International Publishing. https://doi.org/10.1007/978-3-319-
29794-1_7 

https://doi.org/10.3389/fclim.2021.686516
https://doi.org/10.1088/1748-9326/8/1/011002
https://doi.org/10.1088/1748-9326/8/1/011002


 

 
31 

Schilling, F., Baumüller, H., Ecuru, J., von Braun, J. (2023): Carbon farming in Africa: Op-portunities and 
challenges for engaging smallholder farmers. Working Paper 221. Edited by Christian Borgemeister, 
Matin Qaim, Manfred Denich, Till Stellmacher, Eva Youkhana. ZEF Working Paper Series, Bonn. 
Available online at 
https://www.zef.de/fileadmin/webfiles/downloads/zef_wp/ZEF_Working_Paper_221.pdf 

Schober, A. (2021). Challenges in Monitoring Processes of Carbon Credit Projects and their Potentials for 
Farmer Organizations. University of Hohenheim. 

Sharififar, A., Singh, K., Jones, E., Ginting, F. I., & Minasny, B. (2019). Evaluating a low‐cost portable NIR 
spectrometer for the prediction of soil organic and total carbon using different calibration models. Soil 
Use and Management, 35(4), 607–616. https://doi.org/10.1111/sum.12537 

Shen, L., Gao, M., Yan, J., Li, Z.-L., Leng, P., Yang, Q., & Duan, S.-B. (2020). Hyperspectral Estimation of 
Soil Organic Matter Content using Different Spectral Preprocessing Techniques and PLSR Method. 
Remote Sensing, 12(7), 1206. https://doi.org/10.3390/rs12071206 

Shepherd, K. D., Ferguson, R., Hoover, D., van Egmond, F., Sanderman, J., & Ge, Y. (2022). A global soil 
spectral calibration library and estimation service. Soil Security, 7, 100061. 
https://doi.org/10.1016/j.soisec.2022.100061 

Singh, P., & Benbi, D. K. (2020). Modeling Soil Organic Carbon with DNDC and RothC Models in Different 
Wheat-Based Cropping Systems in North-Western India. Communications in Soil Science and Plant 
Analysis, 51(9), 1184–1203. https://doi.org/10.1080/00103624.2020.1751850 

Smith, P., Mercedes Bustamante, Helal Ahammad, Harry Clark, Hongmin Dong, Elnour A. Elsiddig, Helmut 
Haberl, Richard Harper, Joanna House, Mostafa Jafari, Omar Masera, Cheikh Mbow, Nijavalli H. 
Ravindranath, Charles W Rice, Carmenza Robledo Abad, Anna Romanovskaya, Frank Sperling, & 
Francesco N. Tubiello. (2014). Agriculture, Forestry and Other Land Use (AFOLU). In Edenhofer O, R 
Pichs-Madruga, Y Sokona, E Farahani, S Kadner, K Seyboth, A Adler, I Baum, S Brunner, P 
Eickemeier, B Kriemann, J Savolainen, S Schlömer, C von Stechow, T Zwickel, & J C Minx (Eds.), 
Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth 
Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. 

Smith, P., Soussana, J., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., Egmond, F., 
McNeill, S., Kuhnert, M., Arias‐Navarro, C., Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., 
Álvaro‐Fuentes, J., Sanz‐Cobena, A., & Klumpp, K. (2020). How to measure, report and verify soil 
carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas 
removal. Global Change Biology, 26(1), 219–241. https://doi.org/10.1111/gcb.14815 

So, I. S., Haya, B. K., and Elias, M. (2023). Voluntary Registry Offsets Database v7.1. Berkeley Carbon 
Trading Project, University of California. https://gspp.berkeley. edu/faculty-and-
impact/centers/cepp/projects/ berkeley-carbon-trading-project/offsets-database 

Sorenson, P. T., Small, C., Tappert, M. C., Quideau, S. A., Drozdowski, B., Underwood, A., & Janz, A. (2017). 
Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance 
spectroscopy. Canadian Journal of Soil Science, 97(2), 241–248. https://doi.org/10.1139/cjss-2016-
0116 

Stevens, A., van Wesemael, B., Vandenschrick, G., Touré, S., & Tychon, B. (2006). Detection of Carbon 
Stock Change in Agricultural Soils Using Spectroscopic Techniques. Soil Science Society of America 
Journal, 70(3), 844–850. https://doi.org/10.2136/sssaj2005.0025 

Stevens, A., van Wesemael, B., Bartholomeus, H., Rosillon, D., Tychon, B., & Ben-Dor, E. (2008). 
Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. 
Geoderma, 144(1–2), 395–404. https://doi.org/10.1016/j.geoderma.2007.12.009 

Studdert, G. A., Monterubbianesi, M. G., & Domínguez, G. F. (2011). Use of RothC to simulate changes of 
organic carbon stock in the arable layer of a Mollisol of the southeastern Pampas under continuous 
cropping. Soil and Tillage Research, 117, 191–200. https://doi.org/10.1016/j.still.2011.10.006 

Syiem, E., Arpac, L., & Khan, S. (2020). Insights and Experiences from the BioCarbon Fund Emission 
Reductions Projects in the Land-Use Sector: An Overview (p. 66). World Bank. 

Takoutsing, B., Heuvelink, G. B. M., Stoorvogel, J. J., Shepherd, K. D., & Aynekulu, E. (2022). Accounting 
for analytical and proximal soil sensing errors in digital soil mapping. European Journal of Soil Science, 
73(2). https://doi.org/10.1111/ejss.13226 

https://doi.org/10.1111/ejss.13226


 

 
32 

Tennigkeit, T., Solymosi, K., Seebauer, M., & Lager, B. (2013). Carbon Intensification and Poverty Reduction 
in Kenya: Lessons from the Kenya Agricultural Carbon Project. Field Actions Science Reports. The 
Journal of Field Actions, Special Issue 7, Article Special Issue 7. 
https://journals.openedition.org/factsreports/2600 

UNIQUE forestry and land use GmbH. (2021). Carbon finance feasibility study GIZ ProSoil Project in Western 
Kenya. [Final Report]. UNIQUE forestry and land use GmbH. 

UNIQUE forestry and land use. (2020). Soil carbon project development | Best practice study. 

Urbina-Salazar, D., Vaudour, E., Baghdadi, N., Ceschia, E., Richer-de-Forges, A. C., Lehmann, S., & 
Arrouays, D. (2021). Using Sentinel-2 Images for Soil Organic Carbon Content Mapping in Croplands 
of Southwestern France. The Usefulness of Sentinel-1/2 Derived Moisture Maps and Mismatches 
between Sentinel Images and Sampling Dates. Remote Sensing, 13(24), 5115. 
https://doi.org/10.3390/rs13245115 

Vågen, T.-G., & Winowiecki, L. A. (2013). Mapping of soil organic carbon stocks for spatially explicit 
assessments of climate change mitigation potential. Environmental Research Letters, 8(1), 015011. 
https://doi.org/10.1088/1748-9326/8/1/015011 

Vågen, T.-G., Winowiecki, L. A., Abegaz, A., & Hadgu, K. M. (2013). Landsat-based approaches for mapping 
of land degradation prevalence and soil functional properties in Ethiopia. Remote Sensing of 
Environment, 134, 266–275. https://doi.org/10.1016/j.rse.2013.03.006 

Vågen, T.-G., Winowiecki, L. A., Twine, W., & Vaughan, K. (2018). Spatial Gradients of Ecosystem Health 
Indicators across a Human-Impacted Semiarid Savanna. Journal of Environmental Quality, 47(4), 
746–757. https://doi.org/10.2134/jeq2017.07.0300 

van Wesemael, B., Chabrillat, S., & Wilken, F. (2021). High-Spectral Resolution Remote Sensing of Soil 
Organic Carbon Dynamics. Remote Sensing, 13(7), 1293. https://doi.org/10.3390/rs13071293 

Vaudour, E., Gomez, C., Loiseau, T., Baghdadi, N., Loubet, B., Arrouays, D., Ali, L., & Lagacherie, P. (2019). 
The Impact of Acquisition Date on the Prediction Performance of Topsoil Organic Carbon from 
Sentinel-2 for Croplands. Remote Sensing, 11(18), 2143. https://doi.org/10.3390/rs11182143 

Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D. J., Demmatê, J. A. M., Shepherd, K. D., Shi, Z., 
Stenberg, B., Stevens, A., Adamchuk, V., Aïchi, H., Barthès, B. G., Bartholomeus, H. M., Bayer, A. D., 
Bernoux, M., Böttcher, K., Brodský, L., Du, C. W., Chappell, A., … Ji, W. (2016). A global spectral 
library to characterize the world’s soil. Earth-Science Reviews, 155, 198–230. 
https://doi.org/10.1016/j.earscirev.2016.01.012 

Viscarra Rossel, R. A., Lobsey, C. R., Sharman, C., Flick, P., & McLachlan, G. (2017). Novel Proximal 
Sensing for Monitoring Soil Organic C Stocks and Condition. Environmental Science & Technology, 
51(10), 5630–5641. https://doi.org/10.1021/acs.est.7b00889 

Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, 
near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment 
of various soil properties. Geoderma, 131(1–2), 59–75. 
https://doi.org/10.1016/j.geoderma.2005.03.007 

Ward, K. J., Chabrillat, S., Brell, M., Castaldi, F., Spengler, D., & Foerster, S. (2020). Mapping Soil Organic 
Carbon for Airborne and Simulated EnMAP Imagery Using the LUCAS Soil Database and a Local 
PLSR. Remote Sensing, 12(20), 3451. https://doi.org/10.3390/rs12203451 

Wehinger T. and L. Alphayo (2023): ELD study on soil organic carbon in Western Kenya – Impact of 
sustainable land management practices on ecosystem services of soil carbon. Unpublished - 
Economics of Land Degradation (ELD) Initiative hosted by Deutsche Gesellschaft für Internationale 
Zusammenarbeit, Bonn, Germany. 

Wells, G., Fisher, J. A., Porras, I., Staddon, S., & Ryan, C. (2017). Rethinking Monitoring in Smallholder 
Carbon Payments for Ecosystem Service Schemes: Devolve Monitoring, Understand Accuracy and 
Identify Co-benefits. Ecological Economics, 139, 115–127. 
https://doi.org/10.1016/j.ecolecon.2017.04.012 

Winowiecki, L., Vågen, T.-G., & Huising, J. (2016). Effects of land cover on ecosystem services in Tanzania: 
A spatial assessment of soil organic carbon. Geoderma, 263, 274–283. 
https://doi.org/10.1016/j.geoderma.2015.03.010 

https://doi.org/10.1016/j.ecolecon.2017.04.012


 

 
33 

Soil Carbon Certification Services. (2023). Western Kenya Soil Carbon Project. Joint Project Description and 
Monitoring Report. Available on Verra registry: https://registry.verra.org/app/projectDetail/VCS/3669. 
Accessed 15th April 2023. 

Wollenberg, E., Tennigkeit, T., Dinesh, D., Baumert, S., Röhrig, F. Kirfel-Rühle, L., Zeppenfeldt, L. 2022. 
Compensating farmers for ecosystem services: Lessons and an agenda for innovation. 
CompensACTION Policy Brief. 

World Bank. 2021. Soil Organic Carbon MRV Sourcebook for Agricultural Landscapes. © World Bank, 
Washington, DC. http://hdl.handle.net/10986/35923 License: CC BY 3.0 IGO 

Zepp, S., Heiden, U., Bachmann, M., Wiesmeier, M., Steininger, M., & van Wesemael, B. (2021). Estimation 
of Soil Organic Carbon Contents in Croplands of Bavaria from SCMaP Soil Reflectance Composites. 
Remote Sensing, 13(16), 3141. https://doi.org/10.3390/rs13163141 

Zheng, B., Campbell, J. B., Serbin, G. & Galbraith, J. M. Remote sensing of crop residue and tillage practices: 
Present capabilities and future prospects. Soil Tillage Res. 138, 26–34 (2014). 

Žížala, D., Minařík, R., & Zádorová, T. (2019). Soil Organic Carbon Mapping Using Multispectral Remote 
Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions. Remote 
Sensing, 11(24), 2947. https://doi.org/10.3390/rs11242947Ayala Izurieta, J. E., Jara Santillán, C. A., 
Márquez, C. O., García, V. J., Rivera-Caicedo, J. P., Van Wittenberghe, S., Delegido, J., & Verrelst, 
J. (2022). Improving the remote estimation of soil organic carbon in complex ecosystems with 
Sentinel-2 and GIS using Gaussian processes regression. Plant and Soil, 479(1–2), 159–183. 
https://doi.org/10.1007/s11104-022-05506-1  

 
 
 
 
 
  

https://doi.org/10.3390/rs13163141
https://doi.org/10.3390/rs11242947


 

 

34 

Annexes  

A.1: Literature review comparing the accuracy of different methods for SOC estimation.   

Activity 
modellin
g  
(Using 
Roth-C) 

Authors Measured 
Range 

Initial stocks SE EF MD - R2 RMSE Country (IPCC climatic 
zone) 

Kamoni et al 2007 15-40t/ha  -  -  -
0.37 

0.06   0.34a  8.05t/ha Kenya (Tropical 
montane) 

Francaviglia et al 2013 8.5-24.6g/kg 15.2g/kg 4.7  0.58  - -  0.84 12.37g/kg Italy (warm temperate 
moist) 

Lee et al 2021 25.39-
43.55mg/ha 

 35.38mg/ha  - -  -  -  0.98b 2.45mg/ha Australia (warm 
temperate dry) 

Mondini et al 2017  2.5-32g/kg  - -  -   -1.2  - 0.98c 4.5% Italy and Spain 
(warm temperate dry) 

Farina et al 2013 -   1.7%  -  0.42  1.14 -  0.96d 5.7% Australia (warm 
temperate dry) 

Li et al 2006 -  6.9g/kg  -  -  2.22  - 0.78e 14.27  China (warm temperate 
dry) 

Singh & Benbi 2020 -  4.3g/kg -  -  -  -  0.94f  1.07-
9.86mg/ha 

India (tropical dry) 

Studdert et al 2011 - 37.3g/kg -  -  -  -  0.59  4.07mg/h
a 

Argentina (warm / cool 
temperate dry) 

Average             0.77     
  

Ex-situ 
spectros
copy (in 
laborator
y) 

Author Range Mean SD Ban
ds 

Model RPD R2 RMSE    
  

Viscarra & Rossel 
(2006) 

0.85-2.14 
dag/kg 

1.34 0.25 MIR PLSR  - 0.73 0.15dag/kg   
  

(Reeves & McCarty, 
2001) 

6130-33900 
mg/kg 

13380 4630 NIR PLSR 2.78 0.94 993mg/kg   
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Peng et al 2014 0.79-30.73 g/kg  -  - Vis 
NIR 

SPA-SVMR 1.89 0.73 2.78g/kg   
  

Nocita et al 2013 9-50.2 g/kg  -  - Vis 
NIR 

PLSR 2.6 0.87 3.45g/kg   
  

Stevens et al 2008 5.9-22.1 g/kg  -  - VisNI
R 

PLSR 2.03 0.75 0.7g/kg   
  

Jia et al 2017 0.39-130.5 g/kg 20.05 19.4 MIR SVMR 2.12 0.82 9.19g/kg   
  

Jia et al 2017 0.39-130.5 g/kg 20.05 19.4 VNIR SVMR 2.41 0.86 8.06g/kg   
  

Winnowiecki et al 2016 1.5-81.4 g/kg  -  - MIR RF  - 0.95 4.3g/kg   
  

Vagen 1.75-30.31 g/kg  - -  MIR RF - 0.98 1.3g/kg   
  

Shepard& Walsh 2002 2.3-55.8 g/kg 12  - Vis-
NIR 

MARS  - 0.8 3.1g/kg   
  

Fidencio et al 2002 0.4-4.88 %  - -  NIR RBFN  - 0.96 0.32%   
  

Chang & Laird 2002 15.4-144.9 g/kg 48.7 26.1 Vis-
NIR 

PLSR 4.2 0.89 6.2g/kg   
  

Bai et al 2022 0.98-20.49 g/kg 3.54 3.08 Vis-
NIR 

CNN 3.18 0.9 0.97g/kg   
  

Gomez et al 2008a   -  -  - MIR PLSR  - 0.91 0.15dag/kg   
  

Average             0.86     
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Proximal 
sensing 

Author SOC range  Mean SD Ban
ds 

Model RPD R2 RMSE Device 
  

Stevens et al 2008 5.9-22.1 g/kg   2.6 VisNI
R 

PLSR 2.11 0.75 0.7g/kg Fieldspec Pro FR 
  

Sharififar et al 2019 0.05-1.95 % 0.34 0.35 NIR Cubist 2.19 0.78 0.16% Neospectra 
  

Sharififar et al 2019 0.05-1.95 % 0.34 0.35 VisNI
R 

Cubist  2.92 0.89 0.12% ASD 
  

Kusumo 2018 1.41-2.65 % 1.98 0.40 Vis-
NIR 

PLSR 3.82 0.93 0.298% ASD field spec 3 
  

Gomez et al 2008  0.002-5.1 %     Vis-
NIR 

PLSR 1.87 0.71 0.53% AgriSpec portable 
spectrometer 
  

Bricklemyer & Brown 
2010 

6-27.2 g/kg 12.1 3.20 Vis-
NIR 

PLSR 1.3 0.42 - Veris Technologies 
  

Cozzolino et al 2013         PLSR 1.8 0.81 - - 
  

Kodaira & Shibusawa 
2013 

3.88-10.22% 6.59 1.14 Vis-
NIR 

PLSR 2.9 0.9 0.35% RTSS (SAS 1000, 
SHIBUYA MACHINERY 
Co., Ltd.) 
  

Kweon et al 2013 0.4-6.9 2.44 0.81 EC/N
IR 

MLR 4.85 0.83 0.25% Veris OpticMapper with 
soil EC and optical 
sensors 
  

Ji et al 2015         PLSR 1.79 0.7 0.27g/kg   
  

Kuang et al 2015 0.73-17.85% 2.32 2.85 Vis-
NIR 

PLSR 1.95 0.73 1.46% AgroSpec from tec5 
Technology for 
Spectroscopy, Germany 
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Kuang et al 2015  0.73-17.85% 2.32 2.85 Vis-
NIR 

ANN 2.33 0.83 1.22% AgroSpec from tec5 
Technology for 
Spectroscopy, Germany 
  

(Viscarra Rossel et al., 
2017) 

0.02-16.28% 1.54 2.4 Vis-
NIR 

Cubist   0.81 0.41% SCANS 
  

Kuhnel & Bogner 2017 8.3-16.9mg/G 12.4   Vis-
NIR 

Smote/PLS
R 

1.32 0.4 1.9mg/g Agrispec portable 
spectrometer (PAN-
alytical) 
  

Sorenson et al 2017  0.25-6.14% 1.78 1.28   Cubist 2.2 0.8 0.6% P4000 drill rig mounted 
spectrometer (Veris® 
Technologies) 
  

Veum et al 2018 0.03-2.95 
g/100g 

0.67 0.44 Vis-
NIR 

PLSR   0.65 0.26g/100
g 

Veris p4000 
  

Nawar et al 2020 0.96-2.04% 1.33 0.25 VNIR Cubist   0.76 0.12% CompactSpec, Tec5 
Technology, Germany 
  

Shen et al 2020 1.15-3.589% 2.17 0.49   PLSR 1.71 0.71 0.28% ASD) FieldSpec 4 High-
Res 
  

Average             0.75       

Remote 
sensing 

Author SOC range  Mean  SD Dept
h 
(cm) 

Model RPD R2 RMSE Product Resolutio
n (m) 

Vågen & Winowiecki, 
2013 

2-8kg/m2     30 RF Nil 0.65 - Landsat 
ETM+ 

30 

Winowiecki et al., 2016 1.5-81.4g/kg 12.4   30   Nil 0.81 1.03kg/m2 MODIS 500 

(Vågen et al., 2018) 1.75-30.31 g/kg       RF Nil 0.80 8.2g/kg RapidEye 5 

Zepp et al 2021 0.26-18.3% 1.9 1.3   RF 1.77 0.67 1.24% Landsat 30 
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(Vågen et al., 2013) 15.5-51.5g/kg     20 RF - 0.79 - Landsat 
ETM+ 

30 

(Dvorakova et al., 
2021) 

g/kg 12.3     PLSR 2.7 0.78 0.45g/kg Sentinel 2   

Urbina Salazar et al 
2021 

5.03-53.1 g/kg 14.14 10.2   PLSR 1.83 0.70 5.58g/Kg Sentinel 2   

Gomez et al 2008a  0.002-5.1%       PLSR 1.43 0.51 0.73% Hyperion 30 

Ward et al 2020 8-134 g/kg 15.5 26.0
2 

  PLSR 2.19 0.78 11.88g/kg airborne 
HySpex 

  

Ward et al 2020 8-134g/kg 15.5 26.0
2 

  PLSR 2.15 0.77 12.63g/kg simulated 
satellite 
EnMAP 

  

(Dvorakova et al., 
2020)  

7.5-19.9g/Kg 11.6 2.8   PLSR 1.50 0.59 1.75g/kg APEX 2 

Žížala et al 2019 0.84-2.62% 1.44 0.39   RF 1.65 0.74 0.24% Planetscop
e 

  

Vaudour et al 2019 6.38-31.9g/kg 15.08 4.66   PLSR 1.50 0.58 3.02g/kg Sentinel 2 10-20m 

(Ayala Izurieta et al., 
2022) 

Mg/ha     30 GPR   0.85 1.58mg/ha Sentinel 2   

Bhunia et al 2019 0.3-9.9 5.02 2.6       0.81 1.11 Landsat 4   

Average:             0.72       

Notes: 
EF = Modelling Efficiency; CRM =Coefficient of Residual Mass; SD = Standard Deviation; SE = Standard Error; R2 = coefficient of determination; RMSE = Root Mean Square Error; RPD = Residual Product 
D; Model = type of prediction model used for estimating SOC content from spectral data [RF: Random Forest, PLSR: Partial Least Squares Regression, GPR: Gaussian processes regression; ANN: Artificial 
Neural Network, Convolutional Neural Network, SPA: Successive Projections Algorithm, SVMR: Support Vector Machines Regression, MARS: Multivariate adaptive regression splines, RBFN]; Band = region 
of electromagnetic spectrum used for the spectral analysis  

a. Originally given as r, converted to R2. Averaged across 2 research sites in the paper. Estimates to 20cm depth.  

b. Only the R2 value reported for predicting total organic carbon in a cropping environment was taken (See Figure 3 in source) 

c. Originally given as r, converted to R2 

d. Spearman’s correlation coefficient used, results of dry and bare soil models, for all sites was taken. 

e. Originally given as r, converted to R2. Only results from the control (nil) treatment at Changping trial site using the Roth C M model (with input values from measured biomass) are taken. 

f. Results from the independent validation are taken, averaged across 2 cropping types 
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A.2: Basis and Assumptions behind cost estimates used for comparison of the MRV approaches.  

Approach Assumptions  Cost 

($/ha/yr) 

L1 Laboratory analyses of soil samples is performed via wet chemistry at standard 

costs in Kenya ($20 per plot) for all 32,000 plots every 4 years and averaged over 

the 20-year project duration.  

5 

AM3* Survey costs synthesized using local costs (enumerator fees and logistics) in 

Western Kenya for all 32,000 farmers. Assuming the survey is done yearly.  

4.4 

AM1 Following estimates by experts (pers. Comm) placing farmer group monitoring 

costs in Kenya at $3.9/ha/yr.  

3.9 

L2 Laboratory analyses of soil samples is performed via   MIR-spectroscopy at 

standard costs in Kenya ($6.5) for all 32,000 plots every 4 years and averaged 

over the 20-year project duration. 

1.6 

PS2 Average cost for soil analyses with soil scanner in Kenya ($6) for all 32,000 plots; 

performed once every 4 years and averaged over the 20-year project duration. 

1.5 

PS1 Assuming the monitoring entity purchases 1 device per 500 farmers (i.e., 20 

groups of 25 farmers) at the cost of an Agrocares 

(https://www.agrocares.com/scanners/) scanner in Kenya ($3,000). The yearly 

license fee of $1800 for Agrocares database is included. Total cost is then 

averaged over a 20-year project duration. 

0.3 

AM2 Survey costs synthesized using local costs (enumerator fees and logistics) in 

Western Kenya for a sample size of 600 (sample size is calculated based on 

desired statistical accuracy level). Assuming the survey is done yearly.  

0.3 

RS1 Using medium resolution imagery at cost USD 0 - 2.5/km2. Assuming imagery 

analysis cost USD10.4/km2 according to estimates by Böttcher et al. (2009) and 

that no additional equipment / software is purchased. Spectral analysis is carried 

out every 4 years at validation. One-off costs for initial collection of ground truth 

data (1200 soil samples) and analysis via L2 for model calibration are included 

in the costs. Total costs are averaged over the 20-year project duration to 

estimate yearly costs.  

0.2 

RS2/AM4 Assumes identical cost as RS1 since the available data was not sufficient to 

develop cost estimates for this approach. 

0.2 

* Cost estimates for all AM approaches consider data collection only. QC, verification, and data analysis 

are not included.  
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A.3: Scores of the MRV approaches across performance Indicators.  

 L1 L2 AM1 AM2 AM3 RS2 PS1 PS2 RS1 

Accuracy (Potential) 5 4 3 3 3 3 3 3 2 

Standardization 5 4 4 4 4 1 2 2 1 

Cost reduction 1 4 2 1 5 5 5 4 5 

Adoptability 5 5 4 4 5 3 4 4 2 

Community Benefits 3 3 3 2 3 2 4 3 1 
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